Precise brain mapping can improve response to deep brain stimulation in depression

Precise brain mapping can improve response to deep brain stimulation in depression

Posted By News On April 28, 2014 – 7:00pm

Experimental studies have shown that deep brain stimulation (DBS) within the subcallosal cingulate (SCC) white matter of the brain is an effective treatment for many patients with treatment-resistant depression. Response rates are between 41 percent and 64 percent across published studies to date.

One of the proposed mechanisms of action is the modulation of a network of brain regions connected to the SCC. Identifying the critical connections within this network for successful antidepressant response is an important next step.

A new study using MRI analysis of the white matter connections examined the architecture of this network in patients who demonstrated significant response to SCC DBS. Researchers found that all responders showed a common pattern defined by three distinct white matter bundles passing through the SCC. Non-responders did not show this pattern.

The study is published online in the journal Biological Psychiatry, with the title “Defining Critical White Matter Pathways Mediating Successful Subcallosal Cingulate Deep Brain Stimulation for Treatment-Resistant Depression.”

“This study shows that successful DBS therapy is not due solely to local changes at the site of stimulation but also in those regions in direct communication with the SCC,” says Helen Mayberg, MD, senior author of the article, professor of psychiatry, neurology and radiology and the Dorothy C. Fuqua Chair in Psychiatric Imaging and Therapeutics at Emory University School of Medicine.

“Precisely delineating these white matter connections appears to be very important to a successful outcome with this procedure. From a practical point of view, these results may help us to choose the optimal contact for stimulation and eventually to better plan the surgical placement of the DBS electrodes.”

Led by researchers at Emory University, Case Western Reserve University and Dartmouth University, the study included 16 patients with treatment-resistant depression who previously received SCC DBS at Emory. Computerized tomography was used post-operatively to localize the DBS contacts on each electrode. The activation volumes around the active contacts were modeled for each patient. Sophisticated neuroimaging combined with computerized analysis was used to derive and visualize the specific white matter fibers affected by ongoing DBS.

Therapeutic outcome was evaluated at six months and at two years. Six of the patients had responded positively to DBS at six months, and by two years these six plus six more patients responded positively. All shared common involvement of three distinct white matter bundles: the cingulum, the forceps minor and the uncinate fasciculus.

The conversion of six of the patients who were not responding at six months to being responders at two years was explained by the inclusion of all three bundles due to changes in stimulation settings. Non-responders at both six months and two years showed incomplete involvement of these three tracts.

“In the past, placement of the electrode relied solely on anatomical landmarks with contact selection and stimulation parameter changes based on a trial-and-error method,” says Patricio Riva-Posse, MD, Emory assistant professor of psychiatry and behavioral sciences and first author of the paper. “These results suggest that clinical outcome can be significantly influenced by optimally modulating the response network defined by tractography. This obviously will need to be tested prospectively in additional subjects here and by other teams exploring the use of this experimental treatment.”

This new information will allow us to develop a refined algorithm for guiding surgical implantation of electrodes and optimizing the response through fine tuning of stimulation parameters,” notes Mayberg. “That said, improving anatomical precision alone doesn’t account for all non-responders, so that is an important next focus of our research.”

The researchers now plan to study DBS therapy in a prospective protocol of similar treatment-resistant depressed patients, using presurgical mapping of an individual patient’s network structure, precisely targeting the three SCC fiber bundles, and systematically testing the stimulation contacts.

Source: Emory Health Sciences

http://www.sciencecodex.com/precise_brain_mapping_can_improve_response_to_deep_brain_stimulation_in_depression-132565

Advertisements

About vnstherapy

I'm a very, very long-time support person and health care and mental health advocate/activist for my spouse Joyce as well as to others. I'm also a retired business executive and former Board Member, President and facilitator of a local chapter of DBSA as well as a Florida State appointment as a Guardian Advocate. I do not endorse, promote or advertise for any therapy, product or company. I do share our personal experiences, my research and knowledge in the hope it might benefit someone or do I give advice as to what one should or shouldn't do. I extend my best wishes for wellness to one and all and all the good you’d wish for yourselves.
This entry was posted in DBS (Deep Brain Stimulation) and tagged , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s